
Flexible Primitives for Distributed Deep Learning in Ray
Yaroslav Bulatov∗

DIUx
Robert Nishihara∗

UC Berkeley
Philipp Moritz
UC Berkeley

Melih Elibol
UC Berkeley

Ion Stoica
UC Berkeley

Michael I. Jordan
UC Berkeley

ABSTRACT
Distributed computation is increasingly important for deep learn-
ing, and many deep learning frameworks provide built-in support
for distributed training. This results in a tight coupling between
the neural network computation and the underlying distributed
execution, which poses a challenge for the implementation of new
communication and aggregation strategies. We argue that decou-
pling the deep learning framework from the distributed execution
framework enables the flexible development of new communica-
tion and aggregation strategies. Furthermore, we argue that Ray
[12] provides a flexible set of distributed computing primitives that,
when used in conjunction with modern deep learning libraries,
enable the implementation of a wide range of gradient aggrega-
tion strategies appropriate for different computing environments.
We show how these primitives can be used to address common
problems, and demonstrate the performance benefits empirically.

1 INTRODUCTION
Given the importance of distributed computation in scaling up deep
learning training, many of today’s deep learning frameworks pro-
vide built-in support for distributed training [3, 6]. However, as
a result, the training algorithms are often tightly coupled to the
underlying distributed infrastructure. The resulting communica-
tion primitives are often difficult to modify and customize at the
application level (without modifying the deep learning framework
itself).

As practitioners seek to make distributed training practical in
increasingly varied environments such as public clouds where indi-
vidual machines may be preempted or may fail or where networks
exhibit variable performance between machines, we will need train-
ing algorithms capable of adapting to sporadic failures and slow
machines. At the same time, our algorithms should be able to take
advantage of highly reliable computing environments such as su-
percomputers when such environments are available.

One of the most important components of data-parallel training,
is the ability to rapidly aggregate gradients that have been computed
on different machines and devices (e.g., GPUs). Aggregation is
often performed by summation, and the aggregation techniques
include allreduce algorithms [8] or parameter server approaches
[11]. Within these approaches, there are many variants designed to
address different bottlenecks in practice. In an idealized setting (e.g.,
a supercomputer), straightforward synchronous stochastic gradient
descent (SGD) works well and has been used very effectively [9].
In a setting with slow machines, stragglers may become a problem,
and techniques like backup workers [14], asynchronous SGD [7] or

∗equal contribution

the stale synchronous parameter server [10] can be used to address
this bottleneck.

A more limited set of techniques have been proposed to address
the problem of slow parameter servers [4].

We will show that the primitives provided by Ray, though not
specifically designed for gradient aggregation, can be used to im-
plement all of these different schemes.

In addition, separating the distributed execution layer from the
deep learning framework allows Ray-based implementations to
swap in different deep learning frameworks within the same ap-
plication and leaves open the option of implementing different
workers using different deep learning libraries.

2 RAY PRIMITIVES
Ray [12] is a high-performance distributed execution framework
targeted at supporting AI applications and machine learning in
dynamic environments [13]. The underlying system is capable of
executing tasks with millisecond latencies at throughputs of mil-
lions of tasks per second. Ray also uses a shared-memory object
store in addition to zero-copy serialization through Apache Arrow
[1] to provide efficient handling of numerical data. Ray’s API is
designed for general purpose distributed computing, which is pre-
cisely why it provides the flexibility needed to implement diverse
training strategies.

Several components of Ray’s API make it well-suited for im-
plementing the communication strategies underlying distributed
training. First, Ray achieves parallelism through fine-grained dy-
namic tasks. A task may consist of a single gradient computation or
a full training run. As a result, one task (e.g., a training task) may
spawn many more tasks as it executes (e.g., gradient computation
tasks). Parallelism is achieved by executing multiple tasks at the
same time on different workers or actors. Second, Ray encapsu-
lates stateful computation with actors. An actor is a stateful service
whose method invocations are executed as tasks on the actor. These
tasks may trigger the submission of additional tasks or may depend
on other tasks in complex ways.

A parameter server is a natural example of a Ray actor. It may ex-
pose a method for getting its parameters and a method for updating
its parameters. These methods could be invoked by any number of
parameter server clients, which themselves could be implemented
as actors or as long-running non-actor tasks.

At a programming level, Ray tasks (including actor method in-
vocations) return object IDs (similar to futures). An application can
choose to fetch the values corresponding to a given set of object
IDs by blocking until the corresponding tasks have completed. Cru-
cially, Ray includes a primitive wait which allows applications to

Ray is available at https://github.com/ray-project/ray.



Conference’17, July 2017, Washington, DC, USA Y. Bulatov et al.

wait for a subset of tasks to complete or for a timeout to expire.
This primitive gives applications great flexibility in determining their
execution and control flow as a function of runtime performance char-
acteristics, and it is critical for the implementation of strategies like
backup workers for synchronous SGD [14] or partial pulling [4].

By separating the neural network graph from the communica-
tion strategy, Ray makes it easy to experiment with a wide range
of gradient aggregation strategies without changing the underly-
ing neural network computation or modifying the deep learning
framework.

3 EXAMPLES
To illustrate the diversity of training strategies that can be im-
plemented using Ray’s primitives, we implement the following
examples. Each of these is around one to ten extra lines of code
on top of the basic synchronous and asynchronous sharded param-
eter server training applications, which themselves are around a
hundred lines of code.

Vanilla Synchronous Parameter Server: In this basic scheme
[11], the neural network weights are divided evenly between a num-
ber of parameter servers. Each parameter server occupies a different
machine. A number of workers processes occupy a different set
of machines and do the following in lockstep: retrieve the latest
parameters from all of the parameter servers, compute a gradient
update using some training data, and push the different portions of
the gradient update to the relevant parameter servers. Synchronous
schemes are often preferred to asynchronous ones because they
offer more predictable training behavior and are less dependent on
hardware or runtime characteristics.

SynchronousParameter ServerwithBackupWorkers:This
scheme [14] is similar to the regular synchronous scheme except
that a few extra workers are kept around. If a worker is slow and
falls behind, it’s gradient update is not used and results from a
backup worker are used instead.

Asynchronous Parameter Server: The asynchronous scheme
[7] is the same as the synchronous scheme except that the workers
no longer operate in lockstep. If a worker is slow, that worker may
fall behind and updates from that worker may be received even
after the parameter server has performed a large number of updates,
but other workers are not blocked from making progress by a slow
worker.

Bounded Staleness: The bounded staleness scheme [5, 10], sim-
ilar to the stale-synchronous parallel scheme, deals with slow work-
ers by allowing workers to proceed asynchronously within a certain
bound. If a worker falls too far behind, then either the faster workers
will wait for it, or its updates will simply not be used.

Partial Pulling: The partial pulling scheme [4] is an approach
for dealing with slow parameter servers as opposed to slowworkers.
It allows workers to proceed with a given gradient computation
without waiting to receive parameters from every parameter server.
If too much time has passed and parameters have not arrived from
a given parameter server, the worker will simply reuse the previous
parameter values from that parameter server.

Several code examples are available at https://github.com/ray-project/ray/tree/master/
examples/parameter_server.

Figure 1: Left: Synchronous parameter server throughput
for the pure TensorFlow implementation. Right: through-
put of the Ray plus TensorFlow implementation. In both
cases, the number of parameter servers is half the number
of workers (rounded up).

Implementing these communication strategies within a deep
learning framework such as TensorFlow would require deep in-
tegration within the framework itself. By providing distributed
computing primitives outside of a deep learning framework, Ray
enables these custom communication strategies to be implemented
easily at the application level.

4 EXPERIMENTS
As a proof of concept, we implemented the five aggregation strate-
gies from Section 3 and integrated themwith the TensorFlowCIFAR-
10 Resnet implementation provided as part of the official distributed
TensorFlow example [2].

In Figure 1, we compare the synchronous parameter server
throughput of our Ray plus TensorFlow implementation to the
throughput of the pure TensorFlow version. The performance re-
sults are largely similar despite the lack of tuning of our implemen-
tation. The results are slightly worse in the case of 8 workers, for
reasons which we are still investigating. In terms of complexity,
implementing this approach and the four other aggregation strate-
gies from Section 3 took a couple days, which included the time
required to integrate with TensorFlow. In contrast, the synchronous
parameter server implementation in TensorFlow took months of
engineering time.

Our distributed training experiments used between two and
twelve g3.4xlarge worker instances on Amazon Web Services. Each
worker and parameter server ran on a dedicated instance and a
separate instance was used to host a TensorBoard visualization job.
We used the nexus-scheduler framework for orchestrating training
runs and tracking results, which we plan to open-source soon.

In Appendix A, we implement a partial-pull aggregation scheme
and demonstrate that the Ray implementation is robust to slow-
downs in individual parameter server shards. This experiment is of
interest because none of the existing deep learning frameworks are
robust to slowdowns of individual parameter server shards.

https://github.com/ray-project/ray/tree/master/examples/parameter_server
https://github.com/ray-project/ray/tree/master/examples/parameter_server


Flexible Primitives for Distributed Deep Learning in Ray Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] 2017. Apache Arrow. https://arrow.apache.org/. (2017).
[2] 2017. TensorFlow CIFAR10 Distributed Estimator. https://github.com/tensorflow/

models/tree/master/tutorials/image/cifar10_estimator. (2017).
[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: A System for Large-Scale Machine Learning.. In OSDI, Vol. 16.
265–283.

[4] Anonymous. 2018. Faster Distributed Synchronous SGD with Weak Synchro-
nization. International Conference on Learning Representations (2018). https:
//openreview.net/forum?id=H13WofbAb

[5] Peter Bailis, Shivaram Venkataraman, Michael J Franklin, Joseph M Hellerstein,
and Ion Stoica. 2012. Probabilistically bounded staleness for practical partial
quorums. Proceedings of the VLDB Endowment 5, 8 (2012), 776–787.

[6] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

[7] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale
distributed deep networks. In Advances in neural information processing systems.
1223–1231.

[8] Andrew Gibiansky. 2017. Bringing HPC Techniques to Deep Learning. http:
//research.baidu.com/bringing-hpc-techniques-deep-learning/. (2017).

[9] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accu-
rate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv preprint
arXiv:1706.02677 (2017).

[10] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B
Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing. 2013. More effective
distributed ML via a stale synchronous parallel parameter server. In Advances in
neural information processing systems. 1223–1231.

[11] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling
Distributed Machine Learning with the Parameter Server.. In OSDI, Vol. 1. 3.

[12] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, William Paul, Michael I. Jordan, and Ion Stoica. 2017. Ray:
A Distributed Framework for Emerging AI Applications. arXiv preprint
arXiv:1712.05889 (2017).

[13] Robert Nishihara, Philipp Moritz, Stephanie Wang, Alexey Tumanov, William
Paul, Johann Schleier-Smith, Richard Liaw, Mehrdad Niknami, Michael I. Jordan,
and Ion Stoica. 2017. Real-Time Machine Learning: The Missing Pieces. In
Workshop on Hot Topics in Operating Systems.

[14] Xinghao Pan, Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.
2017. Revisiting Distributed Synchronous SGD. arXiv preprint arXiv:1702.05800
(2017).

A PARAMETER SERVER SLOWDOWNS
In the experiment below we evaluate the sensitivity of distributed
training to periodic parameter server slowdowns. This example was
of interest because none of the existing deep learning frameworks
are robust to slowdowns of individual parameter server shards.

For the baseline experiment, we launched two gradient workers
and 2 parameter servers using TensorFlow’s asynchronous parame-
ter server from the official CIFAR-10 Estimator implementation and
inserted a 10 second pauses in one of the parameter server shards
roughly every 60 seconds.

TensorFlow training predictably paused whenever any of the
parameter server shards paused. The Ray implementation used
a partial-pull aggregation strategy [4] which allowed training to
continue during pauses at the cost of increased staleness for some
of the parameters. The results can be seen in Figure 2 and Figure 3.

0

10

20

30

40

50

60

Ex
am

pl
es

 p
er

 se
co

nd

Figure 2: Training throughput of the pure TensorFlow asyn-
chronous parameter server implementation in the presence
of periodic slowdowns of a single parameter server shard.
Throughput consistently decreases when one of the param-
eter servers slows down.

0

10

20

30

40

50

60

Ex
am

pl
es

 p
er

 se
co

nd

Figure 3: Training throughput of a Ray-based implemen-
tation of partial pulling in the presence of periodic slow-
downs of a single parameter server shard. This particular ag-
gregation strategy allows workers to avoid waiting for slow
parameter servers and hence throughput suffers very little
compared with the pure TensorFlow implementation.

https://arrow.apache.org/
https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10_estimator
https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10_estimator
https://openreview.net/forum?id=H13WofbAb
https://openreview.net/forum?id=H13WofbAb
http://research.baidu.com/bringing-hpc-techniques-deep-learning/
http://research.baidu.com/bringing-hpc-techniques-deep-learning/

	Abstract
	1 Introduction
	2 Ray Primitives
	3 Examples
	4 Experiments
	References
	A Parameter Server Slowdowns

