
Growing Cache Friendly Decision Trees
Efficient Online Inference of Gradient Boosted Tree Models

Niloy Gupta
Yelp Inc.

San Francisco, California
niloyg@yelp.com

Adam Johnston
Yelp Inc.

San Francisco, California
adamj@yelp.com

ABSTRACT
This paper discusses a cache efficient compression and re-ordering
strategy for decision trees in order to reduce the latency of online
predictions. In our use case of ad click prediction, we saw latency
improve by a factor of three when compared to a standard deci-
sion tree implementation. We also incorporate these optimizations
into an open source Java library compatible with models trained
with DMLC XGBoost [3, 4] for the benefit of the machine learning
community.

1 INTRODUCTION
One of the key challenges of computational advertising is to ensure
that online model inference is fast enough to meet service latency
requirements without compromising on prediction accuracy. Yelp’s
Ad Targeting system uses Gradient Boosted Trees (GBTs) for pre-
dicting an ad’s click-through-rate (CTR). Evaluating a GBT model
has a time complexity of O(Td) and a space complexity of O(T 2d )
where T is the number of trees and d is the max depth of each tree.
A typical CTR model at Yelp has millions of nodes and on the order
of a thousand trees in order to obtain a desired level of accuracy.
This makes online prediction a challenge.

A basic implementation of a decision tree involves connecting
the nodes of the tree with pointers to its children. The disadvantage
of this implementation is that the nodes are not necessarily stored
adjacently in memory. Due to the simplicity of the tree traversal
logic, much of the model evaluation time is spent dereferencing
subsequent nodes. A popular approach to help solve this problem
is to use a "flat tree approach" [1, 2, 6] where each decision tree
in the model is converted into an array with nodes placed next
to each other in memory. This approach still runs into issues as
the breadth-first ordering results in non-adjacent reads, wasting
cycles on memory stalls. Another approach is the "compiled tree"
implementation [1, 6] where the decision tree is written as nested
ternary expressions with the split condition and feature index as
constants.

Both of these approaches can benefit from an optimized model
structure. In this paper, we discuss a tree layout and node com-
pression strategy which improves the speed of online inference for
large GBT models by improving cache utilization.

2 CACHE OPTIMIZATIONS
2.1 Pre-Order Layout with Cover Statistic
A key aspect of the ad CTR prediction problem is that the dataset is
heavily skewed towards non-clicks. As a result, during the model
training phase, the split points partition the samples at each node

into highly skewed subsets. In otherwords, we expect some branches
to be taken much more frequently than others.

The DMLC XGBoost [3, 4] library has a cover statistic associated
with each node defined as the sum of the second order gradient of
the training data at that node. Therefore, a node’s cover is correlated
to the number of training samples seen at that node. Under the
assumption that our training distribution reflects our online distri-
bution, we can then express the probability of a node’s conditional
being evaluated as true as simply:

P[Conditional] =
TrueChildCover
ParentCover

We then restructure the tree by performing a pre-order traversal
and swapping the order of the child nodes at each step when the
"False" child is more likely than the "True" child. This results in a
pre-order indexing of the tree where the adjacent child node has
a higher cover than its sibling and is therefore more likely to be
visited.

In practice, the combination of the skewed CTR dataset with the
process of boosting producing more specialized trees later in the
ensemble results in very hot paths [5]. Our metric for evaluating
the effectiveness of the pre-order layout with respect to cover is:

CoverBias =

∑
max(TrueChildCover , FalseChildCover )∑

ParentCover
≈ 0.95

This illustrates the extent to which heavily skewed decision trees
benefit from this reordering, since effectively ∼95% of traversal
steps take the hot path.

2.2 Compressed Node Representation
A typical structure for a decision tree node would store the follow-
ing information: split feature index, split feature value, leaf value,
left and right child addresses, and the default child (in the case of
sparse feature vectors1).

It can be observed that every node has either a split condition
or a leaf value but never both. We therefore store whichever value
is present in a single 32-bit field. Since we always place one child
node immediately after its parent node in the array, the parent only
needs to store the address of the distant child (i.e., the child not
in the hot path). Since no address or offset would ever be zero, we
store a zero in that field to indicate when the node is a leaf. Bit
flags for the default path and for if the child nodes were swapped
during restructuring can be stored in the unused sign bit of the two
indexing fields.2 The new conditional is then written such that true
is always the adjacent child in memory.

1XGBoost selects either the true or false child as default for missing values. [4]
2Many languages, including Java, index arrays with signed 32-bit values.



Figure 1: Each node is associated with a cover statistic that
correlates with the number of samples at each node. Chil-
dren with higher cover are placed next to their parent in
memory which makes the tree ordering cache friendly. In
the graphic, the number in each node indicates the cover for
that node.

Compared to a basic implementation which would require 16
bytes just for the child pointers, this design compresses the con-
tents of a node into 12 bytes without impacting the flexibility of the
training or inference implementation. With a 64 byte cache line,
this typically allows for 5 nodes along the current hot path to be
loaded at once.

Split condition or leaf weight (32 bits)
Distant child offset (31 bits) True implies distant child (1 bit)

Feature index (31 bits) Default path (1 bit)

3 OBSERVATION AND RESULTS
The limitations of this implementation require the following con-
straints: the number of nodes per tree cannot exceed 231, the number
of features cannot exceed 231, and the online data must have the
same skewed distribution as the offline training set. In practice, it
is rare to train GBTs on more than 2 billion features or construct
trees deeper than 31 levels. Additionally, models in production are
often retrained to capture the changes in distribution to minimize
the effects of feature drift. Hence these limitations do not restrict us
from using these optimizations in online production environments.

For the benchmark results in Figure 2, we measured prediction la-
tency against a random sample of production data with and without
our described optimizations. Our implementation using compressed
nodes with a cover based pre-order layout offered a 3.1x speedup
compared to a flat implementation and a 2.6x speedup compared
to an implementation using a compressed representation alone.

4 CONCLUSION AND FUTUREWORK
In this paper, we presented a cache efficient compression and lay-
out of decision trees to make online prediction using GBT models
faster. Our design shows significant speedups compared to standard
implementations. We have incorporated these optimizations into

Implementation
0

200

400

600

800

1,000

1,200
1,202.18

537.41
456.81

172.12La
te
nc
y
(m

ic
ro
se
co
nd

s)

Mean latency for single prediction

Pointer-Linked
Flattened Array

Flattened and Compressed
Compressed w/ Pre-Order Layout

Figure 2: Prediction Latency Comparisons. The latency for
the pointer-linked implementation is from an older bench-
mark and wasn’t obtained with the rest of the results.

a Java library used in our production environment, which can be
found at https://github.com/Yelp/xgboost-predictor-java.

Our decision to use pre-order indexing was based on an intuition
that caching as much of the hot path as possible is always the best
approach. However, in cases where any two child paths are followed
with more equal probability, it might be better to cache both paths
to less depth. Additionally, a compiled tree approach would benefit
from our optimizations, which decrease memory stalls and take
advantage of branch prediction. We plan to explore both of these
improvements in the future.

5 ACKNOWLEDGEMENTS
We would like to extend our gratitude to Eric Liu, Joseph Malicki
and Hossein Rahimi for their valuable insights during the design
phase.

REFERENCES
[1] Oleksandr Kuvshynov Aleksandar Ilic. 2017. Evaluating boosted decision

trees for billions of users. https://code.facebook.com/posts/975025089299409/
evaluating-boosted-decision-trees-for-billions-of-users/. (27 March 2017).

[2] KomiyaAtsushi. 2017. xgboost-predictor-java. https://github.com/komiya-atsushi/
xgboost-predictor-java. (2017).

[3] Tianqi Chen. 2017. xgboost. https://github.com/dmlc/xgboost. (2017).
[4] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System.

CoRR abs/1603.02754 (2016). arXiv:1603.02754 http://arxiv.org/abs/1603.02754
[5] K. V. Rashmi and Ran Gilad-Bachrach. 2015. DART: Dropouts meet Multiple

Additive Regression Trees. CoRR abs/1505.01866 (2015). arXiv:1505.01866 http:
//arxiv.org/abs/1505.01866

[6] Andrew Tulloch. 2013. The Performance of Decision Tree Evaluation Strategies.
http://tullo.ch/articles/decision-tree-evaluation/. (2 December 2013).

https://github.com/Yelp/xgboost-predictor-java
https://code.facebook.com/posts/975025089299409/evaluating-boosted-decision-trees-for-billions-of-users/
https://code.facebook.com/posts/975025089299409/evaluating-boosted-decision-trees-for-billions-of-users/
https://github.com/komiya-atsushi/xgboost-predictor-java
https://github.com/komiya-atsushi/xgboost-predictor-java
https://github.com/dmlc/xgboost
http://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1505.01866
http://arxiv.org/abs/1505.01866
http://arxiv.org/abs/1505.01866
http://tullo.ch/articles/decision-tree-evaluation/

	Abstract
	1 Introduction
	2 Cache Optimizations
	2.1 Pre-Order Layout with Cover Statistic
	2.2 Compressed Node Representation

	3 Observation and Results
	4 Conclusion and Future Work
	5 Acknowledgements
	References

