TVM: End-to-End Compilation Stack for Deep Learning

Tianqi Chen1, Thierry Moreau1, Ziheng Jiang2,3, Haichen Shen1
Eddie Yan1, Leyuan Wang2,4, Yuwei Hu5
Luis Ceze1, Carlos Guestrin1, Arvind Krishnamurthy1
1Paul G. Allen School of Computer Science & Engineering, University of Washington
2Amazon Web Service, 3Fudan University, 4UC Davis, 5TuSimple

1 INTRODUCTION
Deep learning models can now recognize images, process natural language, and defeat humans in challenging strategy games. The steadily advancing compute capabilities of modern hardware has played a prominent role in deep learning’s present ubiquity and relevance in many problem domains. Many of the most popular deep learning frameworks, such as TensorFlow, MXNet, Caffe, and PyTorch, harness the power of modern hardware by focusing support on a narrow class of server-class GPU devices— with this support depending on the use of highly engineered and vendor-specific GPU libraries. However, the number and diversity of specialized deep learning accelerators is increasing rapidly in the wild. These accelerators pose an adoption challenge as they introduce new abstractions that modern compilers and frameworks are ill-equipped to deal with.

Providing support in various deep learning frameworks for diverse hardware back-ends in the present ad-hoc fashion is unsustainable. Ultimately, the goal is to easily deploy deep learning workloads to all kinds of hardware targets, including embedded devices, GPUs, FPGAs, and ASICs (e.g., the TPU), which significantly diverge in terms of memory organization, compute primitives etc. Given these requirements, the development of an optimization framework that can lower a high-level specification of a deep learning program down to low-level optimized code for any hardware back-end is critical.

Current deep learning frameworks rely on a computational graph intermediate representation to implement optimizations such as auto differentiation and dynamic memory management \cite{choi18, chen18, deng18}. Graph-level optimizations, however, are often too high-level to handle hardware back-end-specific operator-level transformations. On the other hand, current operator-level libraries that deep learning frameworks rely on are too rigid and specialized to be easily ported across hardware devices. To address these weaknesses, we present TVM1, (shown in Figure 1) an end-to-end system allowing the effective deployment of deep learning workloads specified in a high-level framework (including Caffe, MXNet, PyTorch, Caffe2, CNTK) to diverse hardware back-ends (including CPUs, GPUs, and FPGA-based accelerators).

2 FUNDAMENTAL CHALLENGES
An optimizing compiler for deep learning systems needs to expose both high-level and low-level optimizations. We summarize four fundamental challenges that TVM solves in this section: High-level dataflow rewriting TVM exploits a computational graph representation to apply high-level optimizations. Computational graphs provide a global view on computation tasks, yet avoid specifying how each computation task needs to be implemented. We can perform various high-level data-flow rewriting operations to optimize the computation. Static memory planning can be performed on the graph to pre-allocate memory to hold each intermediate tensor result. Operator fusion fuses multiple operators together into a single kernel without storing intermediate results back into global memory. We can also perform data layout transformations to use a more friendly data layout to speedup computation by exploiting a given hardware architecture’s data layout constraints. Memory reuse across compute units Modern GPUs and specialized accelerators have a shared memory organization for which the often used shared-nothing nested parallel model is not optimal. We enhanced the nested parallel model used in Halide \cite{halide} among other DSLs to allow thread cooperation via shared memory during computation. This enhancement, along with the nested parallel model, can generate GPU code that is performance-competitive with handwritten kernels. Tensorized compute intrinsics Deep learning workloads can be typically decomposed into tensor operators like matrix-matrix multiplication or 1-D convolution. These natural decompositions have led to novel hardware architectures that expose tensor compute primitives that go beyond vector-vector instructions. Examples include matrix-matrix multiplication \cite{matmul}, matrix-vector product \cite{matvec} and 1D convolution \cite{conv}. These new primitives create novel challenges when scheduling high-level tensor operators: the schedule must leverage these primitives to benefit from hardware specialization. We dub this the tensorization problem, analogous to the vectorization problem in SIMD architectures.

Tensorization differs significantly from vectorization. The inputs to the tensor compute primitives are multi-dimensional, with fixed or variable lengths, and dictate different data layouts. More importantly, we cannot resort to a fixed set of primitives, as new deep learning accelerators are emerging with their own flavors of tensor instructions. Therefore, we need a solution that is future proof to support new generations of specialized architectures.

1An extended version of this paper can be found at https://www.cs.washington.edu/hprl/2017/12/UW-CSE-17-12-01.pdf

To solve this challenge, we separate the hardware interface from the schedule. Specifically, we introduce a tensor intrinsic declaration mechanism. We use a tensor expression language to declare the behavior of each new hardware intrinsic, as well as the lowering rule associated with it. As a result, our tensorization procedure replaces a unit of computation with the corresponding tensor intrinsics to take advantage of hardware specialization.

Latency Hiding While traditional architectures with simultaneous multithreading and automatically managed caches implicitly hide latency in modern CPUs/GPUs, specialized accelerator designs usually favor leaner control and offload most of the scheduling complexity to the compiler stack. TVM can generate hardware explicit synchronization instructions to correctly interleave computation with memory operations. As a result, TVM can effectively hide the memory access latency and maximize the utilization and performance of the targeted accelerator.

Relation to Existing Works Deep learning frameworks [3, 4, 6, 7] provide convenient interfaces for users to run deep learning workloads. While existing frameworks currently depend on vendor specific libraries, they can leverage TVM’s stack to generate optimized code for larger hardware devices. High-level computation graph DSLs are a typical way to represent and perform high-level optimizations. Tensorflow’s XLA [3] and the recently introduced DLVM [19] fall into this category. While graph level representations are a good fit for high-level optimizations, they are too high-level to optimize tensor operators under a diverse set of hardware back-ends. Prior work that resorts to vendor crafted libraries require significant engineering effort for each hardware back-end and operator-variant combination.

Halide [16] introduced the principle of separation between compute and scheduling. We adopt Halide’s insight and reuse its existing useful scheduling primitives in our compiler. The tensor operator scheduling is also related other works on DSL for GPUs [11, 17] as well as works on polyhedral-based loop transformation [5, 18].

Figure 2: GPU end-to-end comparison of ResNet and MobileNet workloads among TVM, MXNet, Tensorflow, and Tensorflow XLA on NVIDIA Tesla K80 and GTX 1080.

TACO [14] introduces a generic way to generate sparse tensor operators on CPU. Weld [15] is a DSL for data processing tasks. We specifically focus on solving the new optimization challenges of optimizing deep learning workloads for GPUs and specialized accelerators. More importantly, we provide an end-to-end stack that can directly take descriptions from deep learning frameworks, and jointly optimize together with the high-level stack.

Despite the trend domain specific accelerators for deep learning [8, 13], it is yet unclear how a compilation stack can be built to effectively target these devices. TVM provides a generic solution to effectively target the specialized accelerators via tensorization and compiler-driven latency hiding.

3 EXAMPLE RESULTS

We evaluated TVM on three types of platforms—an embedded CPU, a server-class GPU, and a deep learning accelerator implemented on a low-power FPGA-based SoC. The benchmarks are based on real world deep learning inference workloads including ResNet [10] and MobileNet [12]. We compare our approach with existing deep learning frameworks including MxNet [7] and TensorFlow [2] that rely on highly engineered vendor-specific libraries. The results are summarized in Table 1, Figure 2 and Figure 3. TVM delivers performance across hardware back-ends that is competitive with state-of-the-art libraries for low-power CPU and server-class GPU.

The FPGA experiment demonstrates TVM’s ability to target new hardware accelerator back-ends. It also shows the importance of latency hiding. Overall latency hiding achieves anywhere from 7% up to 54% latency reduction on each kernel by hiding some of the latency of loading data into the accelerator. In terms of compute resources, no latency hiding leads to at best 52% utilization, whereas latency hiding increases utilization to 74%.

4 CONCLUSION

Our system provides an end-to-end stack to solve fundamental optimization challenges across a diverse set of hardware back-ends. We hope our work can facilitate more studies of programming languages, system, and open new opportunities for hardware co-design techniques for deep learning systems.
REFERENCES

