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ABSTRACT

We propose an efficient approach for real-time inference using
deep neural networks implemented through low-power analog
electronic circuits. Although analog implementations can be
extremely compact, they have been largely supplanted by
digital designs, partly because of device mismatch effects due
to fabrication imperfections. We propose a framework that
exploits the power of deep learning to compensate for this
mismatch by incorporating the measured device variations
as constraints in the training process. This eliminates the
need for mismatch minimization strategies and allows cir-
cuit complexity and power-consumption to be reduced to
a minimum. Our results, based on large-scale simulations
as well as a prototype VLSI chip implementation indicate
a processing efficiency comparable to current state-of-art
digital implementations. This method is suitable for future
technology based on nanodevices with large variability, such
as memristive arrays.

1 INTRODUCTION

The large computational demands of Deep Neural Networks
(DNNs) have simultaneously sparked interest in methods
that make neural network inference faster and more power
efficient, whether through new algorithmic inventions [8, 12,
14], dedicated digital hardware implementations [5, 6, 10], or
by taking inspiration from real nervous systems [9, 15, 17–19].

With synchronous digital logic being the established stan-
dard of the electronics industry, many attempts towards hard-
ware deep network accelerators have focused on this approach
[5, 7, 11, 20]. However, the massively parallel style of compu-
tation in neural networks is not reflected in the mostly serial
and time-multiplexed nature of digital systems. An arguably
more natural way of building a hardware neural network emu-
lator is to implement its computational primitives as multiple
physical and parallel instances of analog computing nodes,
where memory and processing elements are co-localized, and
state variables are directly represented by analog currents or
voltages, rather than being encoded digitally [1, 2, 4, 22–24].
By directly representing neural network operations in the
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Figure 1: Implementing and training an analog elec-
tronic neural network. a) The configurable network
is realized on a physical substrate by means of analog
circuits, together with local memory elements stor-
ing the weight configuration. b) The transfer charac-
teristics of individual neurons are obtained through
measurements. c) Including the measured transfer
characteristics in the training process allows opti-
mization of the network for the particular device
that has been measured. d) Mapping the parameters
found by the training algorithm back to the device
implements a neural network whose computation is
comparable to the theoretically ideal network.

physical properties of silicon transistors, such analog imple-
mentations can outshine their digital counterparts in terms of
simplicity, allowing for significant advances in speed, size, and
power consumption [13, 16]. The main reason why engineers
have been discouraged from following this approach is that
the properties of analog circuits are affected by the physi-
cal imperfections inherent to any chip fabrication process,
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which can lead to significant functional differences between
individual devices [21].

Our work proposes a new approach, whereby rather than
brute-force engineering more homogeneous circuits (e.g. by
increasing transistor size or adding active stabilization mech-
anisms), we employ neural network training methods as an
effective optimization framework to automatically compen-
sate for the device mismatch effects.

2 COMPACT CIRCUITS FOR HIGHLY
PARALLEL IMPLEMENTATIONS

The simple operations required to implement a typical neural
network (we consider a multilayer perceptron architecture
here) can be very efficiently realized using analog electronics.
If quantities are represented as currents (current-mode de-
sign), multiplication by a constant (weighting) can be realized
with as few as two transistors, addition comes for free (simply
connect the wires), and rectification (e.g. ReLU activation)
requires a single diode-connected transistor. To achieve a
low-power solution, the circuits can be operated in the sub-
threshold region. The subthreshold current of a transistor
is exponential in the gate voltage, rather than polynomial
as is the case for above threshold operation, and can span
many orders of magnitude. Thus, a system based on this
technology can be operated at orders of magnitude lower
currents than a digital one. In turn, this means that the de-
vice mismatch arising due to imperfections in the fabrication
process can have an exponentially larger impact. Fortunately,
as our method neither depends on the specific form nor the
magnitude of the mismatch, it can handle a wide variety of
mismatch conditions.

Specifically, we propose simple current-mode circuits for
the weights and activations which, thanks to their compact-
ness, can be used to implement a massively parallel, pro-
grammable multilayer network architecture. In our example
implementations weight parameters are stored digitally and
limited to three signed bits of precision. The digital memory
is directly connected to analog transistors implementing the
multiplication. The resulting system requires a mere 5 tran-
sistors per neuron and 11 per weight, which is substantially
less than the hundreds of transistors typically required for
digital multiply-accumulate units.

3 TRAINING A SYSTEM OF
IMPERFECT NEURONS

The process of implementing a target functionality in a het-
erogeneous system of analog neurons is illustrated in Fig. 1.
Once a neural network architecture with modifiable weights
is implemented in silicon, the transfer characteristics of the
different (mismatched) neuron instances can be measured by
controlling the inputs specific cells receive and recording their
output at the same time. If the transfer curves are sufficiently
simple (depending on the actual implemented analog neuron
circuit), a small number of discrete measurements yield suffi-
cient information to fit a continuous, differentiable model to
the hardware response. The continuous description is then
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Figure 2: Analog circuit dynamics allow classifica-
tion within microseconds. The curves represent the
activities (currents) of all hidden (top) and output
(bottom) units of a 196 − 50 − 10 network. When a
new input symbol is presented (top), the circuit con-
verges to its new state within microseconds. Only
a few units remain active, while many tend to zero,
such that their soma circuits and connected synapses
dissipate very little power.

used by the training algorithm, which is run on traditional
computing hardware, such as CPUs or GPUs, to generate a
network configuration that is tailored to the particular task
and the physical device that has been characterized.

4 EXPERIMENTAL RESULTS

Using the measured hardware characteristics as constraints
during training leads to a dedicated set of parameters for
each individual device. We evaluated the effectiveness of our
aproach both through simulations and an actual analog VLSI
prototype chip, fabricated in a 180 nm process. The fully
parallel circuits are able to compute a classification within
microseconds while dissipating microwatts of power (fig. 2).
We obtained state-of-the-art classification results on mnist,
at an efficiency of ≈7TOp/J (simulated system), as well as
on the iris dataset (fabricated prototype chip). Experimental
details can be found in [3].

5 CONCLUSION

We show that a few extraordinarily simple analog electronic
circuits are sufficient for the exact implementation of feed-
forward neural networks. To deal with the fabrication-induced
transistor mismatch, making every circuit instance behave
slightly differently, measured circuit characteristics are taken
into account during training. The proposed method can be
used with a variety of technologies suffering from similar
inherent variations, such as memristive devices.
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